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Abstract-This paper reports in closed form the similarity heatfunctions H for laminar boundary layer 
flow on a flat wall. Plots of the constant-H lines (‘heatlines’) show that the path of convection from a hot 
free stream to a cold wall is unlike the path of convection from a hot wall to a cold fluid. The true path of 
convection in laminar boundary layer flow is visualized in charts drawn for both heat transfer modes (cold 
wall, hot wall), several Prandtl numbers (0.02, 0.72, 7) and isothermal walls and constant-flux walls. The 
paper stresses the heat transfer features that are brought into view for the first time by the heatline patterns. 
As a supplementary contribution, the paper reports the exact similarity solution for the wall with uniform 
flux in the Pr + 0 limit, and proposes a closed-form local Nusselt number correlation that covers the entire 

Pr range. 

1. INTRODUCTION 

THE ‘HEATLINE’ method of visualizing the true path of 
convection heat transfer was proposed in refs. [l, 21. 
It was developed as the convection counterpart (or 
the generalization) of the technique of heat flux lines 
used routinely in heat conduction. 

The first application of heatlines was in the visu- 
alization of laminar natural convection in a two- 
dimensional rectangular enclosure heated from the 
side [ 1, 21. The method has since been adopted and 
extended in several ways in the post-1984 literature. 
Littlefield and Desai [3] extended it to cylindrical coor- 
dinates and illustrated laminar natural convection in 
a vertical annular space. Trevisan and Bejan [4] 
defined the equivalent concept of masslines in con- 
vection mass transfer, and used it to visualize natural 
convection driven by concentration gradients in a 
two-dimensional rectangular enclosure. Morega [5] 
extended the method to the visualization of thermo- 
magnetic convection in melts that are electrically con- 
ductive. Aggarwal and Manhapra [6] employed heat- 
lines in a study of unsteady natural convection in a 
cylindrical enclosure. Heatlines were also used by Ho 
and Lin [7], who visualized the natural convection of 
cold water in a vertical annulus. 

The interesting common feature of all the heatline 
patterns exhibited in the literature until now is that 
they refer to a single class of flows (natural convection 
in enclosures), which happen to be some of the most 
complicated forms of laminar convection known. If 
heatlines are to educate the eye to see the true path of 
the flow of energy through a convective fluid, then it 
makes even more sense to start exhibiting the heatlines 
of the simplest and most basic forms of convection 
heat transfer. The objective of this paper is to make 
this start. In it we present for the first time the heatlines 

of the classical (similarity) laminar boundary layer on 
a flat plate with uniform temperature or uniform heat 
flux. 

2. ISOTHERMAL WALL WITH FORCED 

CONVECTION LAMINAR BOUNDARY LAYER 

The equations that govern the conservation of 
mass, momentum and energy in the constant-property 
laminar boundary layer flow of Fig. 1 are (e.g. ref. [2]. 
chap. 2) : 

aU+aV=() 
ax ay (1) 

au au a% 
u~+vay=vay” 

The heatfunction H(x, y) for two-dimensional flow in 
Cartesian coordinates was defined in refs. [l, 21 for the 
more general case in which the longitudinal thermal 
diffusion term k i3’T/%x2 is not negligible in the energy 
equation. The special feature of the boundary layer 
simplified equation (3) is that the ka’T/ax’ term is 
missing. This feature demands a special definition for 
the heatfunction H(x, y) that is valid inside the 
boundary layer region : 

- g = pc,v(T- TJ -k g. 
ay 

(5) 

The reference temperature T,, is an arbitrary con- 
stant. In this paper we assign to this constant a precise 

3957 



395x AL. M. MOKEGA and A. BEJAN 

NOMENCLATURE 

specific heat at constant pressure r,, wall temperature 
Blasius function, equation (6) 7-f free stream temperature 

.9 similarity heatfunction, equation (I 3) 21, 1’ velocity components, Fig. 1 
H heatfunction C! * free stream velocity 
r7 dimensionless heatfunction, equations .Y. 1‘ Cartesian coordinates, Fig. I 

(101, (27) .\‘. i: dimensionless coordinates, equation (9). 
A dimensionless heatfunction, equation 

(34) Greek symbols 
k thermal conductivity 2 thermal diffusivity 
L wall length 6 ‘1’) velocity boundary layer thickness, 

NM local Nusseh number, equation (3 1) 5-Y Kc, ’ 2 

Nu overall Nusselt number, equations (23), i similarity variable, equation (A2) 

(24) ‘I similarity variable, equation (8) 

Pr Prandtl number 0 similarity temperature profile, equation 

Y” wall heat flux (10) 

v” average heat flux \ kinematic viscosity 

Re, Reynolds number, I/, s/v /’ density 

T temperature T similarity temperature profile, equation 

TX, reference (lowest) temperature (Al). 

meaning : T,,, is the lor~est temperature in the bound- 
ary layer region. We begin with the case where the 
free stream is warm and the wall is cold, T, > T,,, 
which means that T,,r = T,. Later we shall consider 
the reverse situation in which the wall is warmer than 

the stream. 
It is easy to verify that the function H(.x,y) defined 

by equations (4) and (5) satisfies the energy equation 
(3) identically. The challenge is to find this function 

by using equations (4) and (5). The boundary layer 
flow field is described by the classical Blasius solution 

(e.g. ref. [2], p. 49, 

For the calculations described in this paper, we 
determined the Blasius function f(rl) using the fol- 
lowing method. We wrote the Blasius equation as a 
first-order autonomous system of ordinary differential 
equations and solved it using a variable (adaptive) 
step, 4th/5th order Runge-Kutta scheme with error 
control per time step and 10 ’ tolerance over the 
0 < q < 500 interval. The unknown value of.f”(O) was 
found through a trial-and-error shooting technique. 

It is convenient to restate the heatfunction problem 

(6) in terms of the following dimensionless variables : 

‘2 
I’= (vl,f“ _ ,f’) 

where ,f’ = df’ldq, and 

Y 

T,(E)= 1) 

_._._--- 
___________________._-.---~----~---- 

._.--- ” 

,/’ 
/.,- 

t 
,j 

I 

o- --_u~_LTo(e=o) , _ 
0 L x 

FIG. 1. The laminar boundary layer over a flat plate paraM to the free stream, 
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in which Re, = U, L/v. By using these definitions and 
the Blasius flow solution (6)-(8), the heatfunction 

gradients (4) and (5) become 

(11) 

In these equations Pr is the Prandtl number, q is equal 
to yzm i/2 and the function 0(~, Pr) is the similarity 
temperature profile obtained by Pohlhausen (e.g. ref. 
[2], p. 51). We computed 0(q) and 0’(q) for each 
Pr value using an adaptive Gauss quadrature 
implemented by MATHEMATICA@. We set to 16 
digits the working precision and to lo-’ the accuracy 
goal of the numerical integration. The intermediate 
f(q) values needed for the t?(q) integration were 
deduced from the discrete Blasius solution (f, f’, f”) 
by using a locally parabolic interpolation procedure. 
The lo- 6 error limit was preserved throughout the 

numerical process. 
Like the temperature field of the Pohlhausen solu- 

tion, the heatfunction field depends on the Prandtl 
number. The derivation of the analytical form of the 
dimensionless heatfunction fi(Z, j) begins with 
assuming 

&n,j) = _Y’*g[n(a,y)] (13) 

and rewriting equations (11) and (12) in terms of the 
unknown function g(q) 

g’=f’Q (14) 

(15) 

where g’ = dg/dy. By eliminating g’ between equa- 
tions (14) and (15) we obtain 

g(q) = j-e+ k 8’. (16) 

The analytical form of the boundary layer heat- 
function is therefore 

fi(n, rl) = 21’2 i s(n)e(q) + Aeyq) 1 . (17) 

Along the wall the Z? values increase as Z”*, 

i&f, 0) = A 8 yo)w (18) 

because 0’(O) is only a function of Pr (e.g. ref. [2], pp. 
51-52) 

f?‘(O) = 0.332 Pr’13 (Pr > 0.5) (19) 

Q’(0) -+ 0.564 Pr”* (Pr << 0.5). (20) 

The wall heatfunction is zero at the tip of the bound- 
ary layer. At the downstream end of the wall (,? = 1) 

the heatfunction reaches its highest value, which is 

20’(O)/Pr. This value is proportional to the total heat 

transfer rate absorbed by the wall. Note the factor of 

2 in front of 0’(O) and the limiting values 

E?(l,O) = 0.664 Pr-213 (Pr > 0.5) (21) 

1?(1,0) + 1.128 Pr-‘I* (Pr << 0.5). (22) 

The factors 0.664 and 1.128 are the same as in the 
expressions for the overall Nusselt number, 

Nu = 0.664 Pr’13 Re’12 L (Pr > 0.5) (23) 

Nu = 1.128 Pr”* Re”* L (Pr << 0.5) (24) 

where Nu = hL/Llk and & = q”/( T, - T,,). Over the 
entire Pr range the relationship between Nu and the 
fi value at the trailing edge is 

NM = fi( 1,O) Pr Rejj2 (25) 

which is equivalent to 

TL = H(x = L, y = 0). (26) 

In conclusion, the physical (dimensional) value of 
the trailing-edge heatfunction is equal to the toal heat 
transfer rate through the wall. The analytical form of 
the function g(r]) found in equation (16) shows that 
the heatfunction accounts simultaneously for the two 
heat transfer mechanisms that are present in the 
boundary layer, convection (f0) and transversal con- 
duction (20’/Pr). The g(q) function is the similarity 
profile of the boundary layer : g is as basic a feature 
of the similarity boundary layer as f and 0. 

3. THE HEATLINES NEAR A COLD 

ISOTHERMAL WALL 

Figure 2 shows the pattern of heatlines in the 
boundary layer region of a Pr = 0.72 fluid such as air. 
The boundary layer region is drawn in terms of 2 vs 
v, with r] as large as 5 so that u approaches 99% of 

5 

4 

3 

v 

2 

FIG. 2. The heatlines in the scaled boundary layer of thickness 
0 Q 4 < 5, when the isothermal wall is colder than the free 

stream (Pr = 0.72). 
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FIG. 3. The heatlines near a cold isothermal wall (Pr = 0.72). 

the free stream value U, The heatlines are drawn for 
constant values of BPr’ ’ in accordance with equa- 
tion (21), i.e. for the purpose of showing that the 
I? Pr”’ = 0.664 line passes through the trailing edge 
of the wall. 

The same heatlines are shown in Fig. 3, this time 
in the corresponding Cartesian frame of .P vs 7. The 
heatlines are plotted only in the boundary layer 
region, which corresponds to 7 values where 11 < 5. 
The q = 5 curve (or j = 52”‘) is shown by the dotted 
line: it represents the velocity boundary layer, or a 
thickness that is approximately the same as 6,, [Xl. 

The heatlines show the actual path of the energy 
absorbed by the wall. They are perpendicular to the 
wall because at 4’ = O+ the heat transfer is by pure 
conduction and the wall is an isotherm. The heatlines 
that ultimately cross the wall (0 < fl Pr’ ’ < 0.664) 

originate from the flow region situated immediately 
upstream of the tip. Note that when the heatlines enter 
the boundary layer region they are tilted away from 
the cold wall. Their direction turns toward the wall, 
which they eventually cross. This change in direction 

occurs, approximately, at the half-point of the dis- 
tance between the tip and the point where the heatline 
enters the wall. 

The heatlines that cross the wall are more crowded 
near the tip than farther downstream. This feature of 
the heatline pattern makes visible the nonuniform 
distribution of the heat flux over the isothermal wall. 
namely a heat flux y” that is proportional to .Y ’ ?. 

4. THE HEATLINES NEAR A HOT 

ISOTHERMAL WALL 

Consider now the reverse situation in which To is 
greater than T,, and the wall heats the stream. The 
temperature field is insensitive to this change (note 
that in both situations 0 = 0 on the wall, and 0 = I 
in the free stream, Fig. l), however, the pattern ot 
heatlines is markedly different. This drastic change in 
the heathne pattern should be expected because in 

, I 

” 0 0.2 0.4 
x” 

0.6 0.X I 

FIG. 4. The heatlines in the scaled boundary layer ofthickness 
0 < q < 5. when the isothermal wall is warmer than the free 

stream (Pr = 0.72). 

Fig. 3 the wall served as heat sink. while now it is the 
heat source. 

The analytical construction of the R function 
begins with setting T,,, = T, in equations (4) and 

(5), and follows the steps and definitions outlined in 
Section 2. For the sake of conciseness we list only the 
final expression for the dimensionless heatfunction : 

Compare this fi definition with that of equation (IO). 
and note the use of the positive temperature difference 
T,,- T, in the current denominator. The dimen- 
sionless heatfunction l? decreases as we sweep the wall 

in the flow direction (e.g. Figs. 4 and 5). because the 
hot wall releases energy into the fluid. When the wall 
is colder than the fluid, the heat function ~~ of cqua- 

3 

1 

FIG. 5. The heatlines near a hot isothermal wall (Pr = 0.72). 
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tions (10) increases in the x direction (Fig. 3) because 
the wall absorbs energy. 

Figures 4 and 5 show the pattern of heatlines near 
the hot wall, when the Prandtl number is 0.72. These 
figures must be compared with Figs. 2 and 3 to see 
the difference between a wall that releases heat and 
one that absorbs heat. Figure 4 shows the heatlines in 
the scaled boundary layer region 0 < q < 5, while Fig. 
5 shows the same pattern in the corresponding Car- 
tesian frame. The heatlines point in the y” direction 
as they emerge from the wall ; later, they are swept 
downstream by the flow. Their higher density near the 
tip indicates higher heat fluxes. They occupy the same 
region as the velocity boundary layer (the dotted line) 
and in this way they visualize the meaning of a Prandtl 
number that is of the order of 1. 

The Pr - 1 property is illustrated further by the 
heatline that originates from the tip of the plate 
(A Pr 2/3 = 0). This outermost heatline almost 
coincides with the edge of the velocity boundary layer. 
In Fig. 5 we had some difficulty plotting exactly the 
tip heatline fi Pr213 = 0, and settled for one that orig- 
inates from sufficiently close to the tip, 
fi Przi3 = - 0.03. This difficulty is due to the fact that 
q -+ co as 2 --f 0. The A--r 0 heatlines near the X + 0 
region were plotted after rewriting equation (27) as 

In order to avoid numerical overflows, we used 
asymptotic expansions for E?, instead of the inter- 
polating scheme outlined in Section 2. 

5. THE PRANDTL NUMBER EFFECT ON THE 

HEATLINE PATTERN 

We repeated the construction of fi patterns for 
several Pr values, large and small. Figures 6 (cold wall) 

5 
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FIG. 7. The heatlines near a hot isothermal wall (Pr = 7). 

and 7 (hot wall) correspond to Pr = 7 (e.g. water). If 
we compare them with the Pr = 0.72 patterns of Fig. 
3 and, respectively, Fig. 5, we see very clearly that the 
region occupied by the heatlines becomes thinner than 
the velocity boundary layer as the Prandtl number 
increases. Specifically, the thickness of the heatline 
pattern appears to decrease by a factor of about l/2, 
while Pr changes from 0.72 to 7. This agrees very well 
with the proportionality that exists between the scale 
of the thermal boundary layer thickness and Pr-“3 

(when Pr 2 1) (e.g. ref. [2], p. 38) : for the change 
from Pr = 0.72 to Pr = 7 this proportionality recom- 
mends a decrease by nearly the same factor, 
(7/0.72) - “3 = 0.47. 

The heatline patterns of a Pr = 0.02 fluid such as 
mercury are presented in Fig. 8 (cold wall) and Fig. 9 
(hot wall). The heatlines extend well outside the vel- 
ocity boundary layer shown by the dotted line. They 
are nearly vertical inside the velocity boundary layer, 
indicating that convection is not a strong effect so 
close to the wall. Each heatline was drawn for a round 
value of the group fi Pr”‘, which is recommended by 
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FIG. 6. The heatlines near a cold isothermal wall (Pr = 7). 
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FIG. 8. The heatlines near a cold isothermal wall (Pr = 0.02). 
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2o r--- Pr = 0.02, hot wall 

n 
0 0.2 0.4 0.6 0.8 I 

j; 

FIG. 9. The heatlines near a hot isothermal wall (Pr = 0.02). 

equation (22) for the low-Pr range. In this way, the 
8 Pr”’ = 0 and fi Pr’ ’ = 1.128 heatlines mark the 

tip and the trailing edge of the isothermal wall. 

6. HEATLINES NEAR A WALL WITH UNIFORM 

HEAT FLUX 

When the heat flux is distributed uniformly over 
the wall length L. the heatlines will be spaced equi- 
distantly as they enter or exit the wall. This effect 
can be visualized by plotting the heatlines inside the 

boundary layer. The analysis is analogous to that of 
Section 2. except for the temperature distribution in 
the boundary layer, which is now 

The similarity profile O(y) is obtained by solving the 

problem 

0” + 
Pr 
2 (f’n’-f’O)=O 

O’(0) = - 1. O(E) = 0. 

The local Nusselt number is 

(79) 

(30) 

c/s 1 , 
N” = i-[T-(,(S) - T,] - O(O) Rp:‘-. (31) 

We USC this opportunity to correct the claim made 
by Kays and Crawford [9], that a similarity solution 
does not exist for the constant-flux laminar boundary 
layer. This claim was questioned earlier by Krane [IO]. 
The similarity solution for the constant-flux problem 
was reported by Levy [l I], Schuh [12] and, as part of 
a convection and radiation problem, by Sparrow and 
Lin [13]. The latter reported numerical results for 0(O) 
in the Pr range 0.7P100. The Pr + 0 limit of the same 
problem-was reported by Bejan [2] (pp. 358-359, 384. 
3X5), who used a finite-difference formulation of the 
boundary layer near a plane wall swept by parallel 

flow through a saturated porous medium (see Appen- 
dix). 

Since our objective was to construct the heat- 

function inside the thermal boundary layer, we solved 
equations (29) and (30) numerically for several PI, 
values. The numerical work began with the obser- 
vation that the problem of equations (29) and (30) is 
ill conditioned, since an asymptotic limit is prescribed 
instead of a principal boundary condition such as 
O(0). Solving equations (29) and (30) using a shooting 

method (RungeeKutta) did not yield accurate results. 
even though convergence was achieved. The lack ol 
accuracy in this case was indicated by the fact that the 
calculated heatlines were not perfectly perpendicular 
to the wall. 

Instead of shooting we used a finite-difference 
approach in the finite domain I < < < 0. whet-< 
t = I I( I + q). The boundary conditions (30) became 
0 = 0 at < = 0. and I) = 1 at c = 1. and in this way WC 
obtained a well posed boundary value problem. WC 
used a nonuniform mesh that allowed enough grid 
points to accumulate near the < = 1 boundary. The 
Roberts transformation [14] effcctcd a second 
mapping. from 0 < < < 1 to 0 < r < 1, bringing the 
problem to a computational domain with uniform 
mesh. The discrete operator was constructed using the 
Kalnay dc Rivas [ 151 expansions. and the tridiagonal 
system was solved via the I, c’ (Thomas) fac- 
torization/backward substitution algorithm. The 

goodness of the uniform r-meshing was established 
by monitoring the relative error between the linear 
and parabolic gradients oft) at the < = 1 (or r = 1. or 
fl = 0) boundary. A 10 ’ error limit was imposed and 

satisfied by adjusting S = (?r,‘Z), , (?K Cl), ,, in the 

range IO ’ -I 0 ‘. Accuracy tests were performed for 

grids with nodes varying between 200 and 2000. The 
reported results correspond to the finest mesh. The 
solution obtained for @PI) and (I’m which was latci 
used to calculate and plot A(.?,.?) of equation (37). 
satisfied also the orthogonality condition i?fij!li? = 0 
at i := 0. 

n 0.2 0.4 
“x 

0.6 0.8 1 

FIG. IO. The heatlines near a hot wall wth uniform heat flux 
(Pl = 0.72). 
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In this way we extended numerically the Sparrow 
and Lin [13] heat transfer results to Prandtl numbers 
as low as 2 x 10-4. These two sets of results behave 
asymptotically as 

1 0.463 Pr’13, Pr > 10 
-= 
O(O) 0.886 Pr’j2, Pr -+ 0. (32) 

We then constructed a compact Nu expression of the 
Churchill-Ozoe [16] type, which covers the entire Pr 
range and reproduces all of equations (32), 

0.463 Pr’13 Re’12 

N” = [ 1 + (0.0204,Pr) G3] ‘j4 (33) 

Finally, we use this as an opportunity to report the 
derivation of the exact (analytical) expression for the 
temperature profile and heat transfer rate in the limit 
Pr + 0, equations (32). This solution is outlined in the 
Appendix. 

The heatfunction H(x, y) follows from equations 
(4) and (5). We consider the more common situation 
in which the uniform-flux wall is warmer than the 
fluid, as in the case of an electrically heated plate. This 
means that T,, = T,. As scale for H we use q”L, 
which is the total (known) heat transfer rate released 
by the wall, 

Equations (4) and (5) become 

(35) 

(36) 

It is not difficult to integrate equations (35) and (36), 
and to set Z?(O, 0) = 0 at the leading edge of the wall 
to obtain the heatfunction analytically, 

A(Z-,q) = Z(+ PrfB+Q’). (37) 

It is worth noting that this heatfunction is of the type 
ti = Zg(q), in which the similarity heatfunction g(q) 
has the same form as in the case of the isothermal 
wall, equations (16) and (17). This observation 
stresses the importance of g(q), next to the other pro- 
files of the similarity boundary layer, f(r]) and 0(q). 

(e) The density of the heatlines drawn for constant 
increments in H can be used to visualize the dis- 
tribution of heat flux along the wall. Compare the 
isothermal wall of Fig. 5 with the constant-flux wall 
of Fig. 10. 

In addition to these visualization steps, this study 
extends to low Pr values the similarity solution for the 
wall with uniform flux (see the Appendix). A cor- 
relation that brings into a single formula the results 
known for the entire Pr range is proposed in equation 

(33). 
Since f(0) = 0 and 0’(O) = - 1, we conclude that When it is properly nondimensionalized, the heat- 

the heatfunction decreases linearly along the wall, function becomes a spatial generalization of the con- 
A(.Z, 0) = -I, i.e. that the exiting heatlines are equi- cept of Nusselt number. We saw that right on the wall 
distant. Figure 10 shows this feature, along with the the dimensionless heatfunction becomes the same as 
heatlines in the immediate vicinity of the wall. This the classical Nussselt number (e.g. Figs. 3 and 5). 
Pr = 0.72 figure can be compared directly with Fig. 5 More recently, there have been many studies in which 
to see the difference between the uniform heat flux the Nusselt number is defined (integrated) along a 
and uniform temperature boundary conditions. The plane drawn through the convective fluid, for 
heatlines point in they direction as they come out of example, through the mid-plane of an enclosure with 
the wall : note that since f’ = 0 at the wall, equation 
(35) reduces to afi/@ = 0. 

natural convection (e.g. Lage [17]). In this second 
kind of Nusselt number the heat transfer rate is cal- 

7. CONCLUSIONS 

In this paper we reported in closed form the heat- 
functions H for laminar boundary layer flow and heat 
transfer near a flat wall. The particular form of each 
heatfunction depends on whether the wall is warmer 
than the fluid, and on the thermal boundary condition 
at the wall surface (e.g. uniform temperature, or uni- 
form heat flux). The constant-H lines (the heatlines) 
can be plotted as soon as the boundary layer velocity 
and temperature profiles have been calculated. 

Since the objective of this study was to visualize the 
convection phenomenon in the boundary layer region, 
it pays to review the heat transfer features that are 
visualized by heatlines, and not by traditional 
methods such as the use of isotherms : 

(a) The path of convective heat transfer from a 
hot fluid to a cold wall differs totally from the path 
followed by convection from a hot wall to a cold fluid. 
Compare, for example, Fig. 3 with Fig. 5. 

(b) The energy that is absorbed eventually by a cold 
wall originates from the fluid that approaches the 
leading edge of wall. The heatlines then turn and 
become perpendicular as they enter the wall. Examine, 
for example, Fig. 3, 6 or 8. 

(c) The heatlines of the boundary layer near a hot 
wall are perpendicular as they exit the wall. Later, 
they are bent and swept with the flow, while occupying 
the same region as the thermal boundary layer. This 
feature is visible in Fig. 5, 7, 9 or 10. 

(d) The boundary-layer heatlines are always per- 
pendicular to the wall, regardless of the thermal 
boundary condition (isothermal vs uniform flux). 
This feature is an illustration of the fact that the effect 
of longitudinal conduction has been neglected in the 
boundary-layer energy equation, by definition of the 
concept of boundary layer. 
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culated as a superposition of convection and conduc- 
tion, in the same way as in the construction of H. The 
heatfunction is a ‘spatial’ generalization of the Nu 
concept, in the sense that it describes the magnitude 
and direction of the heat transfer rate through any 
surface that can be imagined inserted in the convective 
medium. 

13. 

14. 

We conclude this visualization study with Fig. I I, 
which shows the color maps of the heat functions 
calculated for a Pr = 0.72 fluid. The color red means 

hot, and blue means cold. These maps correspond to 
the heat line patterns of Figs. 3 and 5, and illustrate 
once again the difference between a wall that serves 
as heat sink (Fig. 11, top) and one that serves as heat 
source (Fig. 11. bottom). 
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